
PyG Performance Optimization for CPU Mingfei Ma1, Matthias Fey2 

Szarmach Michal1, Ding Ke1

Yanbing Jiang1, Jain Sanchit1

1. Intel Corporation

2. kumo.ai

Abstract Scatter Reduce Optimization

Message Passing

Take a photo to learn more:

This research is part of a collaboration between Intel 
Corporation and kumo.ai

SpMM Reduce Optimization

Acknowledgements

Message Passing in 3 steps:

• Gather: collect Edge-level information of adjacent nodes and edges.

• Apply: update the collected values with User-defined functions (UDFs).

• Scatter: aggregate to node-level information.

Accelerating PyG CPU performance with 
faster sparse aggregation.
PyG is a library built upon PyTorch to easily write and train Graph 
Neural Networks, which heavily relies on the mechanism of Message 
Passing for information aggregation, we have optimized critical 
bottlenecks of Message Passing from PyTorch, including:

Optimization in 2 steps:

• Sorting: sort the indices to solve write conflicts.

• Reduction: parallel on the outer dimension of self and do vectorized 
reduction for each entry.

For its backward, e.g., gather. sorting will not be necessary, as the memory 
access pattern will not lead to write conflicts.

Sparse Matrix-Matrix Reduction is a fundamental operator in GNN, where 
A is sparse matrix in CSR format and B is a dense matrix, reduction type 
could be “sum”, “mean” or “max”.

1.Scatter Reduce: maps to classic PyG use case when the 
EdgeIndex is stored in COO memory format.

2.SpMM Reduce: maps to the usage case when the EdgeIndex is 
stored in CSR memory format.

C2Graph Neural Networks Performance Optimization

QR Code 
Placeholder

37.80

5.99

39.34

39.30

0

25

50

75

100

before after

SAGE + Reddit Performance Improvement
(Time in seconds, the lower the better)

aten::scatter_add_ other operators

SAGE + reddit single socket inference performance is improved by 
1.7x with scatter reduce optimization. CPU: Intel(R) Xeon(R) Gold 
6248 CPU @ 2.50GHz.

The pattern of scatter reduce is parallel in nature, updating values of 
self using values from src at the entries specified by index. The 
difficulty is to solve the write conflicts when paralleling on M.

One challenge is to balance thread payload when paralleling along rows of 
sparse matrix A. Each row in A corresponds to a node and its number of 
connections may vary vastly, resulting into payload imbalance.

Optimizations: vectorization, unrolling, blocking and balanced partition.

56.09

29.31
25.66

21.95

11.83

0

25

50

75

before vectorization unrolling blocking balanced
partition

GCN+ ogbn-products Performance Improvement
(Time in seconds, the lower the better)

GCN + ogbn-products single socket inference performance is improved 
by 4.3x with SpMM reduce optimization. Intel(R) Xeon(R) Gold 6248 CPU 
@ 2.50GHz.

Performance is highly related to the memory format of EdgeIndex 
which records which pairs of nodes are connected:

• EdgeIndex in COO: physically stored in a [2, #edges] tensor which 
maps each connection of src->dst. Performance hotspot is scatter 
reduce.

• EdgeIndex in CSR: physically stored in CSR (Compressed Sparse 
Row) tensor. Performance hotspot is SpMM reduce.


